
1. Introduction
The timing and magnitude of mountain snowmelt is of vital importance for flood management, hydropow-
er generation, local ecology, and recreation (Lundquist & Dettinger, 2005; Mote et al., 2003). During the 
late-summer period (July–September), snowmelt is a dominant source of streamflow in many mountainous 
basins (e.g., Brauchli et al., 2017; Masiokas et al., 2006; Siderius et al., 2013; Vano et al., 2015). This stream-
flow is driven disproportionately by snow that remains late into the melt season as a result of vegetation, 
terrain, and wind-enhanced snowfall and snow redistribution (Brauchli et al., 2017; Egli et al., 2012; Luce 
et al., 1998; Lundquist et al., 2005; Seyfried & Wilcox, 1995). In fact, the spatial heterogeneity of snow accu-
mulation typically controls spring snow depth distribution as much as, or more than, the spatial heteroge-
neity of incoming energy and the resulting snowmelt (Egli et al., 2012; Luce et al., 1998).

Models struggle to represent the magnitude and spatial heterogeneity of snow water equivalent (SWE) 
accumulation in mountainous terrain (e.g., Brauchli et al., 2017; Clark et al., 2011; Freudiger et al., 2017). 
Precipitation is commonly cited as a dominant source of this error (Günther et al., 2019; Raleigh et al., 2015; 
Wayand et al.,  2013). Atmospheric models, which are sometimes used to provide estimates of snowfall, 
are at coarse resolutions (3–50 km) and are thereby unable to represent finer-scale snow accumulation in 
mountain terrain (Helbig & van Herwijnen, 2017; Strachan et al., 2016; Winstral et al., 2019). To better rep-
resent the heterogeneity of fine-scale snowfall, snow precipitation can be downscaled using methods that 
account for terrain effects like elevation-driven airflow ascent and the associated increases in condensation 
(e.g., Bavay & Egger, 2014; Liston & Elder, 2006a), as well as wind-exposure and terrain-driven preferen-
tial deposition (e.g., Dadic et al., 2010; Winstral et al., 2013). However, increases in snowfall may not be 
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consistent across all slopes at all times (Minder et al., 2008; Roe & Baker, 2006) and fine-scale wind speed 
and wind direction are uncertain (Musselman et al., 2015; Reynolds et al., 2021). A host of spatial-interpo-
lation methods (e.g., Bavay & Egger, 2014; Daly et al., 2008; Liston & Elder, 2006a) have also been used to 
infer how precipitation is deposited in spaces between observations. Yet, spatial interpolation methods have 
issues in mountainous regions where precipitation is spatially variable, observations are sparse (Groisman 
& Legates, 1994; Henn et al., 2016; Hughes et al., 2017; Lundquist et al., 2019), and considerable amounts 
of terrain are at elevations higher than precipitation gauges (Lundquist et al., 2019; Wayand et al., 2013). 
Finally, downscaling methods assume unbiased coarser-scale precipitation, when in mountainous areas, 
precipitation magnitude and phase from atmospheric models and gridded data sets are often biased (e.g., 
Liu & Margulis, 2019; Viste & Sorteberg, 2015; Wayand et al., 2013).

Fortunately, snow deposition is driven by the interaction between prevailing snowstorm characteristics and 
static features like terrain and vegetation, resulting in snowpack spatial distribution patterns that often have 
interannually repeatable characteristics (Deems et al., 2008; Mendoza et al., 2020; Pflug & Lundquist, 2020; 
Sturm & Wagner, 2010). This suggests that observations of snowpack distribution from previous seasons 
could be used to inform how snow should be deposited in real-time. In a study by Vögeli et al. (2016), snow 
deposition was increased and decreased on a gridcell-by-gridcell basis to mimic the spatial increases and 
decreases from a distributed snow depth pattern. In doing so, snow input was downscaled as a proxy for 
unmodeled snow accumulation processes (e.g., preferential deposition, wind-redistribution, etc.). In a fol-
lowing study, Brauchli et al. (2017) found that pattern-based downscaling extended the snowmelt season by 
a month and greatly improved modeled streamflow. Other studies have used the same strategy to improve 
modeled snow distribution and compare interannual snow depth patterns (Gerber et al., 2019; Haberkorn 
et al., 2017).

The approach described above (Vögeli et al., 2016) could downscale snowfall from a coarser-resolution at-
mospheric product using a normalized snow depth pattern from a prior year. However, the success of such 
an approach depends on the relationship between snow deposition (total SWE input from snowfall and 
snow redistribution) and snow depth that is identical at all gridcells. In other words, pattern-based down-
scaling assumes that the snow depth pattern used to downscale snow deposition has (a) spatially homoge-
neous snow density, and (b) is not influenced by winter snowmelt or snow sublimation. Pattern-based snow 
deposition downscaling also requires an unbiased estimate of coarse-resolution snowfall (from which to 
downscale), and interannually repeatable snow depth patterns. We tested these dependencies in California's 
Tuolumne River watershed in a year with below-normal snowfall (water-year 2014) using airborne lidar 
snow depth patterns from near peak-snowpack timing in seven years and mean snowfall from the 6 km 
Weather Research and Forecasting (WRF) atmospheric model. Snow depth simulations were performed 
using a distributed model called SnowModel (Liston & Elder, 2006b), with snow deposition downscaled 
using both pattern-based downscaling (Section 2.1) and a widely used terrain-based downscaling method 
(Section 2.2). In this paper, we address three overarching issues:

1.  The relationship between snow deposition and snow depth near peak-snowpack timing: How much do 
winter snow losses (snowmelt and sublimation) and snow density influence the relationship between 
snow deposition and snow depth, and how does this affect the accuracy of snow depth simulations 
using pattern-based snow deposition downscaling (Vögeli et al., 2016)? How much better or worse is 
pattern-based downscaling as compared to a popular terrain-based downscaling method (Liston & 
Elder, 2006a)?

2.  The interannual consistency of snow patterns: How accurate are snow depth simulations when down-
scaling snow deposition using pattern-based downscaling and a library of snow depth patterns from 
seven different years? What errors could be expected from picking a less-representative pattern?

3.  The reliability of coarse-resolution snowfall: What sort of biases in modeled snow depth do we expect 
from typical, literature-reported biases in snowfall from atmospheric models in the California Sierra 
Nevada?

For each downscaling method (pattern-based and terrain-based), we generated ensembles of simulations 
with different snow deposition multipliers (constant in space and time). These ensembles were used to di-
agnose the origins and magnitudes of model errors for each downscaling (pattern-based and terrain-based). 
We then compared the dominant sources of modeled snow depth uncertainty: the snow deposition 
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downscaling method, interannual snow pattern repeatability, or atmospheric model snowfall biases. This 
careful analysis and synthesis provided guidance on how to best prioritize future research and implement 
the idea of snow-pattern repeatability in practical operations.

2. Background
2.1. Pattern-Based Snow Deposition Downscaling

Atmospheric models can provide meteorological forcing data exceeding the availability of observations in a 
complex terrain (Lundquist et al., 2019). Unfortunately, downscaling snow deposition from the scales of at-
mospheric models (>1 km) to scales relevant to hydrology (<100 m; Clark et al., 2011) remains challenging. 
Pattern-based downscaling adjusts snow deposition as a proxy for the combined effects of snow accumula-
tion processes (e.g., preferential deposition, avalanching, wind-redistribution, etc.) by assuming that snow 
deposition (SWE input) mimics the spatial heterogeneity of a snow depth observation (Vögeli et al., 2016). 
This method downscales snow deposition (p, in meters SWE) at each time (t) and gridcell (x,y),

 , , ,t t
x y x y pp V (1)

where  t
p is domain-mean snowfall (spatially) at each time step (t), and ,x yV  is a spatially distributed snow 

deposition downscaling factor (constant in time). ,x yV  is defined from a distributed snow depth observation,


 ,

, ,x y
x y

d

d
V (2)

where ,x yd  is snow depth at gridcell (x,y), and d is domain-mean snow depth (spatially). These equations 
operate under three major assumptions: (a) every snowfall event deposits snow with spatial heterogeneity 
identical to that of a distributed snow depth observation, (b) an X-percent change in snow deposition (rel-
ative to mean snowfall;  t

p) will result in an X-percent change in snow depth (relative to mean snow depth; 
d), and (c) mean snowfall ( t

p) is unbiased. The pattern-based downscaling also implies that the snow 
depth observation used to calculate ,x yV  was influenced only by spatial differences in snow accumulation. 
In other words, gridcells with no snow in the pattern ( ,x yV  = 0.0) would be provided no snow deposition. 
Gridcells with mean snow depth in the pattern ( ,x yV  = 1.0) would be provided snow deposition at every time 
step (t) identical to  t

p. This assumes a linear relationship (  , ,
t

x y x y
t

d m p ), of slope   / t
d t pm , between 

the snow depth ( ,x yd ) and cumulative snow deposition ( ,
t

t x yp ) at every gridcell.

Pattern-based snow deposition downscaling would be most beneficial operationally if snow deposition 
downscaling factors ( ,x yV ) were interannually repeatable, and therefore could be used to downscale re-
al-time snow deposition using ,x yV  from previous years. Interannual snow pattern repeatability has been 
observed in the Rocky Mountains (Deems et  al.,  2008; Winstral et  al.,  2013; Woodruff & Qualls,  2019), 
Swiss Alps (Schirmer et al., 2011; Schirmer & Lehning, 2011; Vögeli et al., 2016), Alaskan interior (Sturm 
& Wagner,  2010), Spanish Pyrenees (López-Moreno et  al.,  2017), and California Sierra Nevada (Pflug & 
Lundquist, 2020). In fact, for the Tuolumne watershed investigated here, snow depth observations (at 25 m 
spatial resolution) from different years, but with similar snow extents and/or seasonal timing, were spatial-
ly correlated (median r > 0.84) (Pflug & Lundquist, 2020). For snow deposition downscaling factors ( ,x yV ) 
from two different years to match, snow depth must not only be spatially correlated, but also have identical 
normalization. Equation 2 normalizes snow depth patterns using only mean snow depth, and therefore 
assumes that matching snow depth patterns have identical coefficients of variation (ratios between snow 
depth standard deviation and mean snow depth). This assumption is in-line with studies by Sturm and Wag-
ner (2010) and Liston (2004), who assumed a linear relationship between snow magnitude and variability 
(i.e., constant coefficient of variation). Pflug and Lundquist (2020) noted that the ratio between Tuolumne 
mean snow depth and snow depth standard deviation changed nonlinearly with changes in snow extents, 
but agreed closely between lidar observations from years with more similar meteorological conditions and 
similar snow extents. Here, we tested snow deposition downscaled using ,x yV  calculated from peak-snow-
pack snow depth distribution in seven years, including years with similar (r = 0.89) and less-correlated 
(r = 0.71) snow depth patterns.
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2.2. Terrain-Based Snow Deposition Downscaling

To date, most modeling approaches downscale snow deposition from coarser-resolution atmospheric mod-
els using static controls like the terrain (e.g., Bavay & Egger, 2014; Liston & Elder, 2006a). Here, we focus 
on MicroMet (MM; Liston & Elder, 2006a), which has been used to distribute precipitation in a complex 
terrain (e.g., Hiemstra et al., 2002; Liston et al., 2007; Sproles et al., 2013) and is conceptually similar to 
other terrain-based spatial interpolation methods (e.g., Bavay & Egger, 2014; Daly et al., 2008). Provided 
precipitation magnitude from a coarser-resolution data set (such as an atmospheric model), MM smooths 
both elevation and precipitation from the data set to the model grid using inverse-distance weighted (IDW) 
spatial interpolation (e.g., Barnes, 1964; Koch et al., 1983). Then, to represent changes in precipitation as a 
function of orographic effects, MM downscales precipitation (p) at each gridcell (x,y) and model time-step 
(t) using a nonlinear precipitation lapse rate,

p
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where zx y
0 0
,  and px y

t

0 0
,  represent the elevation (m) and precipitation (mm hr−1), respectively, from the IDW-in-

terpolated data. ,x yz  represents the true elevation of each model gridcell and  t is a precipitation lapse rate 
(km−1), which is specific to each calendar month.

2.3. Coarser-Resolution Precipitation and Snowfall Biases

The pattern-based and terrain-based snow deposition downscaling methods both rely on unbiased 
coarse-resolution snowfall. However, snowfall in mountainous watersheds is often uncertain. Uncertainties 
can stem from errors in the observations (e.g., gauge-undercatch) used to measure precipitation at storm-
event timescales and generate distributed precipitation patterns (e.g., Lundquist et al., 2015, 2010; Trapero 
et  al.,  2009; Ye et  al.,  2012). Gridded precipitation products also tend to decrease in accuracy at points 
further away from observations, where precipitation magnitude depends heavily on spatial interpolation 
methods (Currier et al., 2017; Gutmann et al., 2012; Hiemstra et al., 2006). Even if precipitation magnitude 
is correct, snowfall is commonly partitioned from rainfall using surface temperature and humidity, the 
spatial distribution of which can be uncertain in mountainous terrain (Feld et al., 2013; Minder et al., 2010; 
Wayand et al., 2016). Additionally, common precipitation-phase partitioning methods do not fully capture 
the atmospheric conditions influencing precipitation phase (Wayand et al., 2016), and therefore have cali-
brations that vary across different climates (Jennings et al., 2018).

As opposed to observation-based precipitation data sets, atmospheric models account for processes like 
orographic precipitation, thermal convection, and cloud microphysics, which are driven in part by syn-
optic-scale processes and interactions with the underlying terrain (orographic lift, flow separation, etc.). 
Precipitation from these atmospheric models are beginning to surpass the accuracy of observation-based 
data sets in mountainous terrain (Lundquist et al., 2019). However, atmospheric models are still subject to 
uncertainties. These uncertainties are often demonstrated by sensitivities to different boundary conditions, 
convections schemes, microphysical partitioning methods, and other parameterizations in atmospheric 
models (Eyring et al., 2016; Hughes et al., 2017; Jankov et al., 2009; Kim et al., 2021; Morales et al., 2018; 
Taylor et al., 2012). In this study, to test the impact of snowfall biases, we manually imposed snowfall biases 
consistent with errors demonstrated for atmospheric models in the Tuolumne region (Henn, Newman, 
et al., 2018; Hughes et al., 2017; Lundquist et al., 2015).

3. Data and Modeling
We compared the accuracy of terrain-based and pattern-based snow deposition downscaling in the Cali-
fornia Sierra Nevada Tuolumne River watershed. Airborne lidar scanning (ALS) snow depth observations 
(Painter et al., 2016) were used to both define snow deposition downscaling factors (Equation 2) and eval-
uate snow depth simulations (discussed later in this section). We subset ALS observations across three 
6.25-by-6.25 km subdomains (Figure 1) including (a) steep slopes with a variety of different aspects (near 

PFLUG ET AL.

10.1029/2021WR029999

4 of 23



Water Resources Research

Stubblefield canyon), (b) terrain with spatially variable vegetation (Matterhorn canyon), and (c) a North/
South oriented canyon with wind-drifted snow and avalanching (Lyell canyon). Pflug and Lundquist (2020) 
and Currier and Lundquist (2018) both noted the length-scale of snow accumulation variability in this re-
gion was 25 m. To reduce spatial autocorrelation, ALS data sets were regridded from 3 m (native-resolution 
of the ALS observations) to 25 m spatial resolution. Although this spatial resolution smoothed the effects 
of snow processes at spatial reaches less than 25 m, regridding: (a) isolated the dominant source(s) of snow 
deposition (e.g., Clark et al., 2011; Deems et al., 2008; Mendoza et al., 2020), and (b) increased the likelihood 
of interannually repeatable patterns (Deems et al., 2008; Pflug & Lundquist, 2020). However, we expect 
that the pattern-based downscaling investigated here (Equation 1) could also be applied at finer wind-drift 
spatial scales (<10 m).

6 km WRF (Version 3.6; Skamarock, 2008) surface fields of air temperature, relative humidity, wind speed, 
wind direction, and precipitation were used to force snow depth simulations. Boundary conditions for the 
WRF simulations were obtained from the North American Regional Reanalysis climate model (NARR; 
Mesinger et al., 2006). The double-moment Thompson microphysics scheme (Thompson et al., 2004, 2008), 
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Figure 1. Elevation (colorbar) for the Tuolumne watershed (left) and modeling domains (right, contours). The location 
of the Dana Meadows snow pillow is shown in the leftmost plot.
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which best resolves precipitation phase in mountainous terrain (Currier et al., 2017; Hughes et al., 2017; 
Wayand et al., 2016) was used to partition the precipitation phase at each hourly time-step. Air temperature, 
relative humidity, wind speed, and wind direction were downscaled to the ALS grid (25 m resolution) using 
the MM meteorological preprocessing routine (Liston & Elder, 2006a). Since WRF has noted issues with 
shortwave radiation in this region (Lapo et al., 2017), this was calculated within MM using basic solar ge-
ometry and cloud fractions calculated from air temperature, relative humidity, and dew point temperature 
(Walcek, 1994). Estimates of longwave radiation, calculated using the cloud fraction, air temperature, and 
the longwave scheme from Iziomon et al. (2003) (Figure S1c) were used since these estimates were more 
accurate than the WRF longwave radiation at a point near the Tuolumne watershed (Figures S1a and S1b).

SnowModel (Liston & Elder, 2006b) was used to simulate distributed snowpack at hourly time steps and 
25 m spatial resolution. Simulations included liquid water percolation adaptations from Pflug et al. (2019), 
with the melting and nonmelting snow albedo decay functions from Sproles et al. (2013). Snowpack simu-
lations were constrained to a maximum of six layers, which was found by Pflug et al. (2019) to acceptably 
represent snow-layer temperature evolution, and the internal movement of liquid snowmelt. SnowModel 
includes representations of snow redistribution by wind (Liston et al., 2007). Although simulations with 
wind-redistribution slightly outperformed those without, their results were very similar (Figure S2). In this 
work, all modeled snowpack redistribution was disabled. Therefore, SWE was influenced only by precipita-
tion (both snow and rain), snowmelt, and sublimation. These processes are included in the overwhelming 
majority of models with snowpack representations. By downscaling snow deposition using pattern-based 
downscaling, we increased and decreased snow deposition into each gridcell as a proxy for unmodeled snow 
accumulation and redistribution processes (including the disabled wind-redistribution).

Simulations were restricted to water-year 2014, when WRF outputs and ALS observations overlapped. To 
check model performance, SWE was simulated in water-year 2014 at the Dana Meadows snow pillow (Fig-
ure 1). Snowfall at Dana Meadows was defined using the observed increases in SWE, with all other forcing 
from WRF. Modeled SWE evolution matched observations closely (temporal coefficient of correlation of 
0.99) (Figure S3). Snow depth modeled at Dana Meadows also agreed closely with nearby snow depth ob-
servations, suggesting that modeled SWE and snow density, and the resulting snow depth, were realistic.

4. Methods
Snow depth simulations were performed in water-year 2014 with snowfall from WRF downscaled using 
terrain-based (Equation 3) and pattern-based (Equation 1) snow deposition downscaling. For each down-
scaling, an ensemble of snow depth simulations was generated by perturbing snow deposition by a set of 
constant (in time and space) snow deposition multipliers ( ) (Figure 2, box #1) (described in Section 4.1). 
We first compared snow depth simulations using snow deposition downscaled with (a) MicroMet ter-
rain-based downscaling (MM, Section  2.2), and (b) a pattern-based snow deposition downscaling factor 
( ,x yV , Section 2.1) from the simulation season (April 7, 2014; V14). In Section 4.2, we described how we 
compared the two downscaling, and identified the sources and magnitudes of model errors (relating to 
issue #1 in the introduction) using (a) the default ensemble member (  1.0, constant in space and time), 
and (b) the ensemble members (adj, constant in time) that best matched a April 7, 2014 ALS snow depth 
observation on a gridcell-by-gridcell basis (Figure 2, box #3). In Section 4.3, we described how this analysis 
was expanded to include ,x yV  calculated from a different year with spatially correlated snow depth (April 16, 
2016; r = 0.89), and ,x yV  calculated from snow depth observations in other years (0.71  r  0.84) (relating to 
issue #2 in the introduction). In Section 4.4, we focused on snow depth simulated by individual ensemble 
members with different  , representative of common atmospheric model snowfall biases (relating to issue 
#3 in the introduction). Finally, in Section 4.5, we described how we compared the sources of model errors 
(downscaling methods, interannual pattern repeatability, and coarse-scale snowfall biases), both individu-
ally, and in combination.

4.1. Model Ensemble Generation

Equation 3 was first used to independently downscale both rainfall and snowfall (partitioned by WRF) to 
the 25 m model grid. To ensure that mean snowfall was identical for all downscaling (pattern-based and 
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terrain-based), domain mean snowfall ( t
p) was calculated from the snowfall downscaled using Equation 3 

over each domain and time step. Pattern-based snow deposition downscaling (Equation 1) was then cal-
culated from the product of  t

p and snow deposition downscaling factors ( ,x yV ) calculated from ALS snow 
depth patterns from near peak snowpack timing in seven different years (2013 through 2019). The pat-
tern-based downscaling was designed to adjust snow deposition (SWE input) as a proxy for multiple snow 
accumulation processes (wind-redistribution, preferential deposition, avalanching, etc.). However, these 
processes likely did not affect rainfall in the same way. Following methods from Vögeli et al. (2016), rainfall 
was distributed using only terrain-based downscaling (Equation 3) in all simulations.
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Figure 2. Snow deposition was downscaled (box #1) using 1) terrain-based MicroMet lapse rates (MM), 2) a snow deposition downscaling factor ( ,x yV ) from 
April 7, 2014 (V14), and 3) ,x yV  from airborne lidar scanning (ALS) snow depth on April 16, 2016 (V16). An ensemble of simulations was performed for each 
downscaling using a normally distributed set of constant (in both space and time) snow deposition multipliers ( , dashed lines). In addition to the default 
ensemble member (box #3, red line), the ensemble member best-reproducing the April 7, 2014 (box #3, black line) target ALS observation (box #3, scatter point) 
was selected for each model gridcell.
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Constant snow deposition multipliers ( ; Figure 2) (constant in space and time) were used to generate an 
ensemble of simulations for each downscaling. Henn, Clark, et al. (2018) used a distribution of precipitation 
multipliers with a standard deviation of ∼0.26 to represent basin-average snowfall uncertainty across the 
full Tuolumne watershed. Across the modeling domains here (Figure 1), which were approximately the size 
of the WRF pixels, we expected snowfall biases to be larger (e.g., Lundquist et al., 2019). Additionally, snow 
into any 25 m gridcell could be biased by not only WRF snowfall biases, but also errors with snow deposition 
heterogeneity. To account for these errors, the standard deviation of   was set at 0.52 (twice the standard 
deviation used by Henn, Clark, et al., 2018), discretized at 50 values, centered at   1.00, and spread by 
equal probability between the 5% and 95% confidence intervals.   was extended at the lower boundary (by 
increments of 0.02, to 0.05) and upper boundary (by increments of 0.1, to 2.9), to encompass snow depth 
observations that diverged by large amounts from the simulations. Snow deposition downscaled using ter-
rain-based snow deposition downscaling (Equation 3) was adjusted,

 , , ,t t
x y x yP p (4)

and used to generate an ensemble of simulations (Figure 2, MM). The simulations with pattern-based snow 
deposition downscaling (Equation 1) were also adjusted by  ,

   , , .t t
x y x y pP V (5)

4.2. Comparing Pattern-Based and Terrain-Based Snow Deposition Downscaling

We started by comparing snow depth simulated by the default ensemble members (  1.0, constant in 
space and time) (Figure 2, box #3, red line) using (a) terrain-based downscaling (MM) and (b) pattern-based 
downscaling with a snow deposition downscaling factor ( ,x yV ) defined from the ALS observation nearest 
peak-snowpack from the same year as the simulation (V14; April 7, 2014). The snow depth spatial coef-
ficient of correlation (r), median percent bias (of all individual gridcells), mean absolute error (err), and 
coefficient of variation (CoV) percent-error were used to evaluate the accuracy of simulated snow depth 
versus the April 7, 2014 ALS observation.

To diagnose the sources and magnitudes of downscaling errors, we determined the MM and V14 ensemble 
members that agreed closest with the April 7, 2014 target ALS observations on a gridcell-by-gridcell basis 
(adj, constant in time, variable in space) (Figure 2, box #3, black line). Since both MM and V14 simulations 
were provided identical domain mean snowfall ( t

p), identical model forcing, and the same snow model, 
differences in the distributions of adj between the different downscaling (e.g., Figure 3a) were driven only 
by differences in snow deposition. Additionally, since the V14 simulation used the same ALS observation 
(from April 7, 2014) to define the snow deposition downscaling factor ( ,x yV ) and pick the best-performing 
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Figure 3. Conceptual diagram (a) showing the distribution of the best-performing ensemble members (adj) for simulations with terrain-based downscaling 
(MM), and pattern-based downscaling (V14 and V16). The linear relationship between cumulative snow deposition and snow depth assumed by the pattern-
based downscaling (b, solid line) is compared versus the linear relationships for two different adj (b, dashed lines).
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ensemble members (adj), model errors were not driven by interannual differences in ,x yV  (issue #2 from 
the Introduction). Instead, the distribution of adj necessary to correct the V14 pattern-based downscaling 
could be attributed to the combination of (a) spatial differences in ,x yV  driven by processes other than snow 
accumulation (like snowmelt, snow sublimation, and snow density spatial variability), and (b) biases in  t

p. 
V14 adj that were used more-frequently (e.g., Figure 3a, adj1 and adj2) identified portions of the modeling 
domain that exhibited similar relationships between cumulative snow deposition and snow depth (Fig-
ure 3b, blue dashed lines). Here, we evaluated the V14 most frequently used adj and their connections with 
winter snow losses (snowmelt and snow sublimation), connections with snow density spatial variability, 
and the degree to which the relationships between cumulative snow deposition and snow depth differed 
from the linear relationship (discussed in Section 2.1) assumed by the pattern-based downscaling method 
(Figure 3b, solid line).

For the small portion (<4%) of each domain with snow-absence on April 7, 2014, ensemble members using 
different snow deposition multipliers could reproduce snow-free conditions by simulating snow disappear-
ance at different dates. In the results, we excluded gridcells where snow depth in the April 7, 2014 obser-
vation was less than the uncertainty of the ALS observations (0.08 m). Excluding these gridcells excluded 
comparisons between matching snow-free simulations and observations, and thereby made our metrics of 
model performance on April 7, 2014 (coefficient of correlation, median bias, mean absolute error, and CoV 
error), more critical.

4.3. Identifying Errors Driven by Interannual Changes in Snow Patterns

The pattern-based downscaling would be most useful if snow deposition downscaling factors ( ,x yV ) from 
previous years could be used to downscale snow deposition in real-time. Therefore, the methods from Sec-
tion 4.2 were repeated using the snow deposition downscaling factors ( ,x yV ) defined from ALS observations 
near peak-snowpack timing in other years (2013, and 2015–2019). We first focused on pattern-based snow 
deposition downscaling using ,x yV  from April 16, 2016 (V16, Figure 3a), which had different snow depth 
magnitude (∼42% larger), but spatially correlated snow depth (r = 0.89). ,x yV  calculated from the ALS obser-
vation on this date represented the best-case-scenario for pattern-based snow deposition downscaling using 

,x yV  from a different year (given this set of ALS observations). However, we also evaluated the impact on 
snow depth simulations when downscaling snow deposition using ,x yV  from years with less-similar meteor-
ological conditions and less-spatially correlated (0.71  r  0.84) snow depth patterns.

4.4. Identifying Errors Driven by Coarse-Scale Snowfall Biases

Individual ensemble members with different snow deposition multipliers ( ; constant in time and space) 
were also used to evaluate the impact of domain mean snowfall biases on simulations with terrain-based 
downscaling, and simulations with pattern-based downscaling using ,x yV  from different years. In other 
words, since all downscaling methods were provided identical  t

p (Section 4.1),   influenced the average 
snow mass into each domain by the same amount, yet the spatial heterogeneity of snow deposition was 
still dictated by the downscaling strategy. For instance, the ensemble member with   1.25 (Equation 5) 
was used to represent snow depth that would be simulated given a +25% bias to the WRF snowfall.   values 
were selected to encompass the range of snowfall biases observed for atmospheric models and precipitation 
products in this region (e.g., Henn, Newman, et al., 2018; Hughes et al., 2017; Lundquist et al., 2015), rang-
ing between ±60%.

4.5. Combining and Isolating Errors Driven by Downscaling Methods, Interannual Snow 
Pattern Repeatability, and Coarse-Scale Snowfall Biases

We finished by comparing the sources of snow deposition downscaling errors detailed in Sections  4.2–
4.4, both individually, and in combination. We used two-way analysis of variance (ANOVA) to compare 
peak-snowpack modeled snow depth errors across simulations with different snowfall biases ( ) against 
simulations with different downscaling methods (pattern-based vs. terrain-based) and snow deposition 
downscaling factors ( ,x yV ) from different years. These results were used to disentangle the combined errors 
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from different snow deposition downscaling (pattern-based vs. terrain-based), snowfall biases, and interan-
nual changes to snow depth patterns.

5. Results
5.1. Comparing Pattern-Based and Terrain-Based Snow Deposition Downscaling

April 7, 2014 snow depth simulated using pattern-based and terrain-based downscaling (default ensemble 
members,   = 1.00 at all gridcells) differed by large amounts. Snow depth simulated using terrain-based 
downscaling (MM) was only biased by −5% (−0.06 m), 14% (0.14 m), and −8% (−0.07 m) across the Stubble-
field, Matterhorn, and Lyell domains, respectively (Table 1). However, the spatial distribution of snow depth 
was too homogeneous (CoV biased between −13% and −47%) with poor snow depth spatial distribution 
(r < 0.38) (Figure 4). As compared to the simulation with terrain-based downscaling, the simulation with 
pattern-based downscaling using the snow deposition downscaling factor ( ,x yV ) from the same year as the 
simulation (V14) was biased by similar magnitudes but had a April 7, 2014 snow depth coefficient of cor-
relation (r) that improved from 0.28 to 0.76, and a mean absolute error that improved from 0.38 to 0.24 (on 
average, across the three domains). However, the V14 default ensemble member tended to overaccumulate 
and underaccumulate in deep and shallow-snow regions, respectively, resulting in a modeled snow depth 
CoV that was high-biased by greater than 20% in each domain (Table 1). The causes for this are detailed in 
the remainder of this section.

The best-performing ensemble members (adj) for the simulations with terrain-based (MM) and pat-
tern-based (V14) downscaling reproduced the April 7, 2014 target snow depth observations (Table 1) using 
very different adjustments to snow deposition (Figures 5a and 5b). The MM ensemble members that best-re-
produced the April 7, 2014 snow depth (adj) were widely distributed. In fact, no single adj (given the set of 
  used in this study) occurred across more than 5% of any domain (Figure 5a). This showed that the spatial 
heterogeneity of snow accumulation was misrepresented by the simulation with terrain-based downscal-
ing, requiring a large range of snow deposition adjustments to match ALS observed snow depth on April 7, 
2014. This differed from the V14 best-performing ensembles, which matched April 7, 2014 snow depth us-
ing unique ensemble members much more frequently (Figure 5b). For each domain, these increases in V14 
adj frequency were not centered about a single adj value, but instead resembled multi-modal distributions 
about different adj, each with narrow peaks (relative to the distribution of adj for the MM downscaling). In 
other words, large portions of each domain had snow deposition that was able to be corrected with a smaller 
number of snow deposition multipliers, each corresponding to unique issues with the V14 pattern-based 
snow deposition downscaling. Since the V14 simulation used the same ALS observation (from April 7, 2014) 
to define the snow deposition downscaling factor ( ,x yV ) and pick the best-performing ensemble members, 
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Snowfall downscaling Ensemble members Coefficient of correlation (r) Median bias (%) Mean absolute error (m) Coefficient of variation bias (%)

Domain: S M L S M L S M L S M L

Terrain-based [MM] ε = 1.0 0.24 0.21 0.37 −5 14 −8 0.42 0.42 0.30 −47 −32 −13

εadj 0.99 0.99 0.99 0 0 0 0.01 0.02 0.01 0 0 0

Pattern-based [V14]   = 1.0 0.83 0.81 0.63 −6 15 11 0.20 0.27 0.26 27 21 20

adj 0.99 0.99 0.99 0 0 0 0.01 0.01 0.01 0 0 2

Pattern-based [V16]   = 1.0 0.64 0.53 0.46 −5 19 10 0.32 0.48 0.43 33 32 38

adj 0.98 0.95 0.94 0 0 0 0.03 0.04 0.06 6 9 20

Note. Statistics are shown for the default ensemble member (  = 1.0) and for the best-performing ensemble members (adj) in the Stubblefield, Matterhorn, 
and Lyell domains (S, M, and L, respectively).

Table 1 
Statistics for Snow Depth Simulated on April 7, 2014 (at noon) Using Terrain-Based (MM) and Pattern-Based Snow Deposition Downscaling Factors ( ,x yV ) From 
April 7, 2014 (V14) and April 16, 2016 (V16)



Water Resources Research

V14 model errors were attributable to (a) errors with ,x yV , and (b) biases in domain mean snowfall ( t
p) 

(Section 4.2). In the remainder of this section, we focus on the sources of ,x yV  errors.  t
p biases are discussed 

in Section 5.3.

Pattern-based snow deposition downscaling assumes that snow depth and the resulting snow deposition 
downscaling factor ( ,x yV ) is influenced only by spatial differences in snow deposition. However, spatially 
variable winter snow losses (snowmelt and sublimation) and snow density can manipulate ,x yV . For in-
stance, assuming two gridcells with equal snow depth and snow density (and thus equal ,x yV  and SWE), a 
gridcell that had snowmelt and/or snow sublimation would require more snow deposition to achieve that 
snow depth than a gridcell with no snow losses. Similarly, assuming two gridcells with equal snow depth 
(equal ,x yV ) and no winter snow losses, a gridcell with denser snow would require more snow deposition 
to achieve that snow depth than a gridcell with less-dense snow. In the Tuolumne domains in water-year 
2014, the best-performing V14 ensemble members had spatially variable snow density (Figures 6d–6f) and 
winter snowmelt and sublimation (snow losses) prior to April 7, 2014 (Figures 6j–6l). This resulted in a 
gridcell-by-gridcell relationship between cumulative snow deposition and April 7, 2014 snow depth that 
differed from the linear relationship assumed by pattern-based snow deposition downscaling (Figure  6, 
solid lines), but conformed more with several different linear relationships. These linear relationships 
corresponded well with the peak adj frequencies from Figure 5b (e.g., conceptual diagram in Figure 3). 
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Figure 4. April 7, 2014 snow depth (colorbar) for each domain (columns) observed by airborne lidar scanning (ALS) 
(top) and simulated using snow deposition (  = 1.0) downscaled using terrain-based downscaling (MM, second row) 
and pattern-based snow deposition downscaling factors ( ,x yV ) from April 7, 2014 (V14, third row) and April 16, 2016 
(V16, fourth row).
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For example, winter snow losses occurred prior to April 7, 2014 in all 
the three domains (Figures 6j–6l). In these gridcells, snow losses reduced 
snow depth observed by ALS, reduced ,x yV , reduced snow deposition, and 
resulted in shallower simulated snow depths that melted more readily. 
Put another way, since April 7, 2014 ,x yV  was influenced by winter snow-
melt and snow sublimation, the V14 simulation double-counted winter 
snow losses in both (a) ,x yV , and (b) the snow simulation. At gridcells with 
larger winter snow losses (Figures 6m–6o, red-shaded), the relationship 
between cumulative snow deposition and April 7, 2014 snow depth was 
approximated best (Figures 6g–6i) by the rightmost peak in adj frequency 
(Figure 5b) corresponding to larger snow deposition multipliers.

Winter snow losses influenced ,x yV  not only in gridcells with snowmelt 
and snow sublimation, but also in gridcells without winter snow losses. 
For instance, in the Lyell canyon domain, lower-elevation snowmelt re-
duced domain mean snow depth (d) to a value smaller than what it would 
have been if snow depths were influenced by snow accumulation only. As 
a result, gridcells with no winter snow losses appeared deeper, relative 
to d, than they should have been. This resulted in high-biased ,x yV  and 
snow deposition. The relationship between cumulative snow deposition 
and April 7, 2014 snow depth in these gridcells was approximated best us-
ing snow deposition multipliers of 0.85, 0.74, and 0.82 in the Stubblefield, 
Matterhorn, and Lyell domains, respectively (Figures 6g–6i). These snow 
deposition multipliers corresponded well with peaks in adj frequency 
from Figure 5b. Approximately 4% of the Stubblefield domain, 13% of the 
Matterhorn domain, and 8% of the Lyell domain also contained gridcells 
on mid- to high-elevation north-facing slopes (Figures 6m–6o, blue shad-
ing) that had no winter snow losses, less snow settling, less-dense snow, 
and thereby required less snow deposition to achieve snow depths iden-
tical to gridcells in more-exposed locations (Figures  6a–6c, red boxes). 
This effect was also noted by Vögeli et al. (2016) and Brauchli et al. (2017) 
between north and south-facing slopes in the Swiss Alps. These gridcells 
approached April 7, 2014 snow depth observations best using the smallest 
adj from Figure 5b.

The combined impact of winter snow losses (snowmelt and snow sub-
limation) and spatially variable snow density on snow depth resulted 
in ,x yV  and simulated snow depth that was too spatially heterogeneous 
(Figure  4). Here, using the best-performing V14 ensemble members 
(Figure  6), we also calculated ,x yV  using simulated April 7, 2014 SWE  

( , , SWESWE /x y x yV ). In doing so, ,x yV  was no longer influenced by snow density spatial variability. As 
compared to ,x yV  calculated using April 7, 2014 snow depth, ,x yV  calculated from April 7, 2014 SWE had a 
CoV that was only ∼4% smaller (Figure 7). However, we also calculated ,x yV  using the cumulative snow dep-
osition of the best-performing V14 ensemble members (  , , /t

x y t x y pV p ), which was not influenced by 
either snow density spatial variability or winter snow losses. ,x yV  calculated using April 7, 2014 cumulative 
snow deposition had a CoV 31%–40% smaller than ,x yV  calculated from April 7, 2014 snow depth (Figure 7). 
Therefore, for pattern-based downscaling, the overaccumulation and underaccumulation of snow in deep 
and shallow snow regions (Figure 4 and Table 1) was driven much more (∼8 times more) by winter snow 
losses than snow density spatial variability.

5.2. Identifying Errors Driven by Interannual Changes in Snow Patterns

The snow deposition downscaling factors ( ,x yV , calculated using ALS snow depth observations) from April 
7, 2014 and April 16, 2016 were remarkably similar (r = 0.89). In fact, it was difficult to visually distinguish 

PFLUG ET AL.

10.1029/2021WR029999

12 of 23

Figure 5. Frequency (percent of each domain's gridcells) of the ensemble-
members (adj) best-reproducing the April 7, 2014 target airborne lidar 
scanning (ALS) observation in each domain (line color and marker). 
Results are for the terrain-based snow deposition downscaling (MM, (a), 
and pattern-based downscaling using the snow deposition downscaling 
factor ( ,x yV ) from April 7, 2014 (V14, b), and ,x yV  from April 16, 2016 (V16, 
c). The spatial map of adj are shown in Figure S4.



Water Resources Research

differences in ,x yV  between the two dates (Figure 8). Although mean snow depth on April 16, 2016 was 
∼42% greater on average, the ALS observations were both within a week of peak-snowpack timing in their 
respective seasons, snow extents agreed to within 8%, and snow depth coefficients of variation agreed to 
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Figure 6. April 7, 2014 snow density (a–f) and winter snow losses (g–l) for the best-performing V14 ensemble members in each domain (columns). The scatter 
plots in subplots (a–c) and (g–i) are identical but colored in accordance with the spatial data in the subplots below them. The 25 m gridcells that diverged the 
most from the pattern-based snow deposition downscaling assumptions were colored over a hillshaded map of each domain (m–o).
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within 5%. Overall, the difference between April 7, 2014 and April 16, 2016 ,x yV  was not well-explained by 
any terrain characteristic (  0.20r ). However, some of the larger ,x yV  differences in the Matterhorn domain 
were in regions with forest cover (green regions in Figure 1), suggesting that snow-forest processes may 
have been different. In the Lyell domain, ,x yV  differences were larger on many Northeastern-facing slopes 
and in the Northeast corner of the domain where avalanches and snow-sloughing are more common. The 
default snow depth ensemble member (  = 1.00) using pattern-based downscaling and ,x yV  from April 16, 
2016 (V16) had a April 7, 2014 mean absolute error of 0.41 m (71% larger than V14), and a coefficient of 
correlation of 0.44 (28% smaller than V14), on average across the three domains.

Some of the best-performing V16 ensemble members (Figure 5c) used adj from the edges of the ensem-
ble-space (adj = 0.05 or adj = 2.90), showing that the lidar snow depth observations were sometimes outside 
of the snow depth ensemble-space. This occurred at gridcells with shallow snow depth and small snow depo-
sition downscaling factors ( ,x yV ), where large and small adj changed snow deposition and the resulting snow 
depth by small amounts (typically < 0.05 m). Despite these issues, the best-performing ensemble members 
still reproduced April 7, 2014 snow depth well (Table 1). In addition to the errors with pattern-based down-
scaling driven by snow density spatial variability and winter snow losses (Section 5.1), the best-performing 
V16 ensemble members also had to correct for the spatial differences in snow patterns between April 16, 
2016 and April 7, 2014. As a result, the V16 ensemble required a wider range adj to approach the April 7, 
2014 ALS observation, smoothing the unique spikes in adj frequency seen for the V14 ensemble (Figure 5).

Snow deposition downscaling factors ( ,x yV ) varied most from ,x yV  on April 7, 2014 in seasons with snowfall 
magnitude and snow extents unlike 2014 (Pflug & Lundquist, 2020). For example, water-year 2015 had the 
shallowest snow volume ever recorded or estimated in the Tuolumne watershed (Belmecheri et al., 2016; 
Margulis, Cortés, Girotto, Huning, et al., 2016). As a result, larger portions of the model domains were snow-
free during the March 5, 2015 ALS observation, reducing mean snow depth (d) and elevating ,x yV  values in 
gridcells where snow existed. Snow deposition downscaled using this snow pattern simulated snow depth 
that was too heterogeneous, increasing the interquartile range (IQR) of simulated snow depth errors at 
peak snowpack timing (Figure 9,   1.0). The same was true for the simulations with pattern-based snow 
deposition downscaling using ,x yV  from April 3, 2013. Conversely, ,x yV  calculated from ALS observations of 
deep snowpacks on April 1, 2017 and March 24, 2019 had less snow depth variability relative to domain 
mean snow depth (Figure 8), and thereby simulated snow depth that was more spatially homogeneous than 
pattern-based downscaling using other ,x yV . The sources of interannual snow depth pattern differences in 
this region are discussed more in Pflug and Lundquist (2020).
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Figure 7. The distribution of snow deposition downscaling factors ( ,x yV ) calculated using April 7, 2014 snow depth (red, dashed), April 7, 2014 snow water 
equivalent (SWE) (black, dashed), and cumulative snow deposition (cumulative increases in SWE) prior to April 7, 2014 (black, solid). Distributions shown by 
black lines were calculated using the V14 best-performing ensemble members.
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5.3. Identifying Errors Driven by Coarse-Scale Snowfall Biases

Cumulative WRF snowfall prior to April 7, 2014 was biased by only small amounts, matching total snow 
volume on April 7, 2014 closely (Section 5.1). However, we know that 6 km snowfall from atmospheric 
models can be biased in mountainous regions. In Figure 9, we show the distribution of snow depth errors 
for various constant snow deposition multipliers ( , constant in space and time).   ranged between 0.40 
and 1.60 to represent a 60% error in mean snowfall, consistent with previous studies in this region (Henn, 
Newman, et al., 2018; Hughes et al., 2017; Lundquist et al., 2015). April 7, 2014 median snow depth biases 
typically increased linearly with   for all terrain-based and pattern-based downscaling methods. For ε ± 10% 
Figure 9, zoomed portion), the IQR of errors driven by errors with the different snow deposition downscal-
ing were more than twice as large as the median snow depth biases. Therefore, even provided a 10% bias in 
domain mean snowfall, all simulations had an IQR that included snow depth biases in the opposite direc-
tion (positive/negative) of the snowfall bias. However, for 25% biases (  values of 0.75 and 1.25), the upper 
and lower boundaries (respectively) of the IQR of snow depth errors were closer to 0 m, suggesting that 
the magnitude of snow depth errors driven by uncertainties with both the pattern-based and terrain-based 
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Figure 8. Snow deposition downscaling factors ( ,x yV ) calculated from airborne lidar scanning (ALS) observations 
on April 7, 2014 (top row) and April 16, 2016 (second row) in the three domains (columns). Spatial differences in 

,x yV  (April 7, 2014–April 16, 2016) are shown in the third row. The distribution of ,x yV , and the mean snow depth (d, 
including all three domains) are also compared for ALS observations nearest peak-snowpack timing for 7 years (bottom 
row).
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downscaling were comparable in size to snow depth errors driven by snowfall biases. The combined effect 
of ,x yV  errors and snowfall biases are discussed in Section 5.4.

We tested the impact of snowfall biases by prescribing identical snow deposition multipliers ( ) to all snow-
fall events. However, errors in snowfall for single snow events may still have a sizable impact on modeled 
snow depth. For instance, in this study, WRF overestimated a spring snowfall event (April 25/26, 2014), 
causing snow depth volume biases upwards of 30% through much of the snowmelt season (Figure 10). Even 
though the spatial heterogeneity of snow influences the rate and timing of spring snowmelt (e.g., Freudiger 
et al., 2017; Luce et al., 1998; Pflug & Lundquist, 2020), this spring snowfall bias caused model departures 
from observed snow volume that were larger than the late-spring differences between simulations with dif-
ferent snow deposition downscaling. The spring snowfall event also biased the cold content of late-season 
snowpack and delayed the rate of spring snowmelt (relative to observations), causing differences between 
modeled and observed snow depth volume that grew over time for all simulations. Currently, springtime 
precipitation magnitude and phase errors are a known issue for atmospheric models in mountainous ter-
rain (Aas et al., 2017; Wrzesien et al., 2015). As shown by Figure 10, these errors could affect snowmelt 
modeling and forecasting, even in cases where peak snowpack volume and spatial distribution is modeled 
well, and spring snowmelt energy is accurate.
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Figure 9. Snow depth simulation errors including all domains on April 7, 2014. Snow deposition was downscaled using terrain-based MicroMet lapse rates 
(white with black outline) and pattern-based downscaling using ,x yV  from airborne lidar scanning (ALS) observations in different years (colors) across a range 
of constant (in space and time) snowfall biases (x-axis).
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5.4. Combining and Isolating Errors Driven by Downscaling Methods, Interannual Snow 
Pattern Repeatability, and Coarse-Scale Snowfall Biases

The combination of snowfall biases, and the impact of winter snowmelt, winter sublimation, and spatially 
variable snow density on the snow deposition downscaling factor ( ,x yV ), could have compounding effects on 
the accuracy of snow depth modeled using the pattern-based snow deposition downscaling. For example, 
assuming a domain mean snowfall bias of +50% ( 1.50), snow deposited using the pattern-based down-
scaling was not uniformly biased in space, but was instead biased as a multiplicative factor of ,x yV  and   
at each gridcell (Equation 5). Given this snowfall bias ( 1.50), ,x yV  from a year with a too heterogeneous 
snow depth pattern (e.g., 2015) would multiplicatively increase the heterogeneity of simulated snow depth 
(Figure 9). However, two-way analysis of variance (ANOVA) determined that the IQR of snow depth errors 
were significantly different (p < 0.01) across simulations with different mean snowfall biases ( , ranging 
between 0.40 and 1.60), but not for simulations using ,x yV  from different years (p > 0.30). Therefore, in these 
domains in water-year 2014, the magnitude and spread of modeled snow depth errors were dominated by 
common snowfall biases, even when assuming ,x yV  used to downscale snow deposition was only available 
from years with less-similar snowpack (e.g., 2015 and 2017) and the range of snowfall biases ( ) were more 
modest (between 0.75 and 1.25).

Simulations with terrain-based downscaling were less-sensitive to snowfall biases than simulations with 
pattern-based downscaling. For instance, ,x yV  defined from ALS snow depth observations (Figure 8) com-
monly varied from 0 (−100% adjustment from mean snowfall) to greater than 2 (+200% adjustment from 
mean snowfall). However, the spatial pattern of terrain-based downscaling dictated by elevation and  t 
(Equation 3) adjusted snowfall from WRF by no more than 30%, resulting in simulated snow depth that 
was far too spatially homogeneous. In fact, the heterogeneity of snow was so poorly captured that the IQR 
of snow depth errors for simulations with terrain-based downscaling was nearly equal to the IQR of snow 
depth observed by ALS on April 7, 2014 (0.69 m). Additionally, there was little difference in the IQR of snow 
depth errors across the 60% range of mean snowfall biases ( ) tested in Figure 9. Put another way, we 
would expect a similar IQR of model errors on April 7, 2014 provided simulated snow depth that was equal 
to mean snow depth at all model gridcells.

Since snow depth simulated using terrain-based snow deposition downscaling did not attempt to capture the 
more-complex drivers of snow accumulation (e.g., wind-redistribution, preferential deposition, avalanch-
ing, etc.), and as a result simulated snow depth that was too spatially homogeneous, spring snow melted 
more rapidly than observations and simulations with pattern-based downscaling (Figure 10). Interestingly, 
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Figure 10. Total (summed) snow depth volume (left y-axis) and average snow depth (right y-axis) including the Stubblefield, Matterhorn, and Lyell domains. 
Snow depth was simulated using terrain-based snow deposition downscaling (black line) and pattern-based downscaling using snow deposition downscaling 
factors from peak-snowpack in 2015, 2016, and 2017 (colored lines) (default ensemble members,   1.0). Simulated snow volume was compared versus 
airborne lidar observations (markers). April 7, 2014 and a spring snowfall event are also marked.



Water Resources Research

the simulation with pattern-based downscaling using ,x yV  from April 1, 2017, which was more spatially 
homogeneous (CoV 14% smaller than ,x yV  calculated from the April 7, 2014 ALS observation), matched 
ALS observed snow volume preceding the spring snowfall event better than any other simulation. This was 
driven by the fact that April 1, 2017 snow depth observation had much deeper snow depth that was less-in-
fluenced by winter snowmelt and snow density spatial variability, and as a result, had ,x yV  spatial variability 
(Figure 8) that agreed closely with melt- and density-corrected ,x yV  on April 7, 2014 (Figure 7, solid black 
line). This suggests that interannual changes in winter snowmelt, snow sublimation, and snow density were 
major sources of interannual differences in ,x yV .

6. Discussion and Recommendations for Future Work
Since interannual changes to snowmelt, snow sublimation, and snow density were partially responsible 
for interannual changes to ,x yV , future efforts should focus on correcting or mitigating for these effects. For 
instance, Vögeli et al. (2016) calculated ,x yV  from snow depth observations earlier in the winter snow season, 
thus reducing the amount of winter snow losses. Vögeli et al. (2016) also calculated ,x yV  across a region with 
less snow density spatial variability. However, early winter snowmelt occurred in each of the Tuolumne 
domains between mid-December and February water-year 2014. ,x yV  calculated from too early in the winter 
season may also decrease the likelihood of interannual snow pattern repeatability since winter-integrated 
snow accumulation patterns tend to be more repeatable than snow accumulation patterns driven by a small 
number of snowstorms (Schirmer et al., 2011). Pattern-based downscaling could have also been performed 
including only gridcells with similar snow densities and negligible winter snow losses. However, including 
only these regions (unshaded regions in Figures  6m–6o) would neglect snowpack that is hydrologically 
important for streamflow forecasting in this region.

Some snow deposition downscaling methods more explicitly attempt to account for effects like wind-driven 
snow preferential deposition and redistribution (e.g., Dadic et al., 2010; Sturm & Wagner, 2010; Winstral 
et al., 2013) and larger-scale meteorological processes like air temperature gradients, rain shadows, and 
coastal effects (e.g., Daly et al., 2008; Livneh et al., 2015; Thornton et al., 1997). Contrary to these approach-
es, the pattern-based snow deposition downscaling method tested here downscaled snow deposition to im-
plicitly mimic the spatial increases and decreases in snow depth patterns resulting from multiple complex 
processes including wind-redistribution, preferential deposition, and avalanching. This approach is advan-
tageous since mountain meteorological forcings at the spatial scales of these processes are uncertain (e.g., 
Musselman et al., 2015; Reynolds et al., 2021). Additionally, few snow models represent these complex snow 
processes, and for those that do, performing simulations with spatial resolutions and snow-layering schemes 
relevant to processes like wind-redistribution and avalanching is computationally expensive. In this study, 
we downscaled snow deposition using a unique library of ALS snow depth observations (7 years) at spatial 
resolutions much finer (25 m) than the commonly used gridded meteorological products discussed above 
(800 m). These lidar snow depth observations also have great accuracy (0.08 m) in high-elevation terrain 
where gridded products routinely decrease in reliability (Lundquist et al., 2019; Wayand et al., 2013).

Future snow-focused satellite missions (e.g., Kim et al., 2017) are expected to increase the frequency and 
extent of snow pattern observations, and interannual snow pattern repeatability has been observed in many 
locations (Deems et al., 2008; Pflug & Lundquist, 2020; Sturm & Wagner, 2010; Woodruff & Qualls, 2019). 
Therefore, we expect that pattern-based snow deposition downscaling could still be a valuable approach 
for the snow community, becoming even more valuable after correcting for the issues detailed in this man-
uscript. For example, since errors in the linear relationship between snow depth and the snow deposition 
were dominated by winter snow losses, time-continuous SWE products from previous years (Barrett, 2003; 
Margulis, Cortés, Girotto, & Durand et al., 2016; Margulis et al., 2019; Rittger et al., 2016) may be better 
suited to calculate snow deposition downscaling factors. These SWE products could be used to calculate the 
gridcell-by-gridcell daily cumulative increases in SWE, including the SWE lost to winter snowmelt and snow 
sublimation. Snow deposition downscaling factors calculated using cumulative increases in SWE would not 
be influenced by snow density spatial variability nor winter snow losses. Additionally, these continuous 
SWE products are often calculated using satellite observations and distributed point observations, which are 
more common than airborne lidar and have multidecadal data records, which may increase the likelihood 
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of identifying a historic snow pattern with conditions representative of snowpack in any given year. This 
may be particularly true in years with less-typical meteorological conditions and snow patterns. Snowfall bi-
ases from atmospheric models could also be corrected by improving atmospheric model performance, or by 
bias correcting snowfall using real-time observations. For instance, subgrid snow depletion simulated by the 
WRF land surface model is a known issue in mountainous regions (Aas et al., 2017; Wrzesien et al., 2015), 
including the Tuolumne domain investigated here. Aas et al.  (2017) found that correcting WRF subgrid 
snow depletion improved air temperature and latent heat fluxes between the land surface and atmosphere, 
changing spring precipitation magnitude by up to 50% in a Nordic region. This approach should also be 
investigated in the California Sierra Nevada. Provided a reliable snow deposition pattern, strategically lo-
cated field observations (e.g., Oroza et al., 2016; Pflug & Lundquist, 2020) may be also able to bias-correct 
coarser-scale estimates of snowfall from atmospheric models like WRF.

7. Conclusion
Snow accumulation in mountainous terrain is highly variable, and the distribution at fine spatial scales 
(<25 m) impacts the timing and duration of spring snowmelt, and related ecology and water operations. 
While most current models do not accurately account for the multitude of processes that influence snow 
spatial heterogeneity, snow accumulation patterns can be remarkably similar interannually (Pflug & Lun-
dquist, 2021). Here, we downscaled 6 km WRF estimates of mean snowfall to 25 m using lidar-observed 
snow depth patterns from the California Tuolumne River watershed near peak-snowpack timing in seven 
different years. We compared the pattern-based snow deposition downscaling with a popular terrain-based 
snow deposition downscaling routine, using lidar observations as evaluation, and assessed the magnitude 
of snow depth errors driven by domain mean snowfall biases, different snow deposition downscaling meth-
ods, and interannual changes to snow depth patterns.

Fine-scale snow depth magnitude and spatial distribution were most influenced by mean snowfall esti-
mates in a complex terrain, the accuracy of which is among the greatest limitations for mountain snow 
modeling (Lundquist et al., 2019; Raleigh et al., 2015). At peak-snowpack timing, the influence of common 
Sierra Nevada snowfall biases (60%) on the magnitude and spread of snow depth errors was larger, and 
significantly different from (p  <  0.01) errors contributed by two different snow deposition downscaling 
approaches (terrain-based and pattern-based) and by interannual changes to snow depth patterns (for pat-
tern-based downscaling). Even provided unbiased winter snowfall, snowfall biases from a single spring 
snow event caused simulated snowmelt rates and spring snow volume to diverge from observations. Again, 
this divergence was larger than variations driven by (a) simulations with different downscaling, and (b) 
simulations downscaling snow deposition using snow depth patterns more- and less-similar to snow depth 
patterns from the simulation year (Figure 10).

Snow depth simulated at peak-snowpack timing using pattern-based snow deposition downscaling was bet-
ter correlated with snow depth observations (0.52 < r < 0.76) than simulations with more-commonly-used 
terrain-based downscaling (r = 0.27). However, snow deposition downscaled using snow depth patterns of-
ten simulated snow depths that were too spatially heterogeneous. These errors were driven mostly by winter 
snowmelt and snow sublimation, which influenced peak-snowpack snow depth and the gridcell-by-gridcell 
relationship to cumulative snow deposition prior to that date. Although spatially variable snow density 
also influenced the relationship between snow deposition and snow depth, its impact on the spatial heter-
ogeneity of snow deposition in this domain was about eight times smaller than winter snowmelt and snow 
sublimation (Figure 7). Interannual changes in snowmelt, snow sublimation, and snow density were also 
partially responsible for interannual changes in snow depth patterns, and the resulting snow input when 
using pattern-based snow deposition downscaling.

We determined that the largest sources of pattern-based snow deposition downscaling errors, listed in order 
from most- to least-impactful, included (a) coarse-scale snowfall biases from atmospheric models, (b) snow 
depth patterns that were influenced by processes other than snowfall (like snowmelt, snow sublimation, 
and snow density), and (c) interannual changes to snow accumulation patterns. Although pattern-based 
snow deposition downscaling adjusts snow input as a proxy for physical processes that are a current fo-
cus of much model development, pattern-based downscaling may provide the ability to improve modeled 
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snowpack accuracy for the majority of models without complex snow deposition and redistribution rou-
tines, in a computationally efficient manner, using tools and observations that we have at our disposal today. 
Future efforts should therefore focus on strategies that could bias-correct snowfall provided from atmos-
pheric models and correct snow patterns for processes that change the relationship between observed peak 
snow depth and winter snow deposition, like snowmelt, snow sublimation, and snow density.

Data Availability Statement
The 25 m regridded lidar, 6 km WRF data, and model outputs from this study are archived in the Hydros-
hare public data repository at https://www.hydroshare.org/resource/0b41fc78e4f044b096b67f3197b8640c/
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